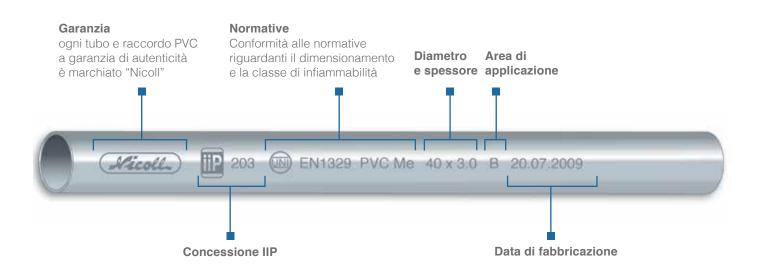


Sistema di scarico idrosanitario in PVC Me

Tubi e raccordi in PVC Me ininfiammabile


349

Sistema di scarico idrosanitario in PVC

Tubi in PVC dal Ø 32 al Ø 200 mm

I nostri tubi sono conformi alla Norma UNI EN 1329 e classificati Me (ex M1), come contraddistinto dalla marcatura presente su ogni tubo.

Raccordi in PVC dal Ø 32 al Ø 315 mm

I nostri raccordi sono conformi alla Norma UNI EN 1329 e classificati Me (ex M1), ogni singolo pezzo è marcato con i dati identificativi e di fabbricazione.

Qualitá

Gli stabilimenti della Nicoll Francia, certificata ISO 9001 (AFAQ), mantiene e controlla

la qualità in tutte le sue fasi:

- Approvigionamento delle materie prime,
- Produzione,
- · Consegna.

Ciò garantisce la regolarità delle caratteristiche e delle prestazioni attese.

Ambiente

Gli stabilimenti della Nicoll Francia, certificata ISO 14001 (AFAQ), intende mantenere:

- La sua volontà a preservare l'ambiente come aspetto prioritario
- Il suo impegno a migliorare in maniera costante le sue performance ambientali e quelle dei suoi prodotti.

Certificazioni e normative

Marchio NF Me:

Reazione al fuoco dei materiali per lo scarico.

Tutti i raccordi di scarico Nicoll all'interno di questo catalogo sono marcati NF per la reazione al fuoco, la guale garantisce la costanza di classificazione alla reazione al fuoco Me, con licenza d'identificazione n° 14.

Marchio NF E:

Tubi e raccordi in PVC per evacuazione delle acque reflue. Tutti i raccordi di scarico Nicoll all'interno di questo catalogo sono marcati NF per l'evacuazione delle acque (NF 055), con licenza d'identificazione n° 14.

Le certificazioni

Benestare tecnico UBATC (Belgio): il sistema di scarico Nicoll beneficia del benestare tecnico ATG 98/1887 rilasciato dall'Unione Belga per le costruzioni.

Certificazione KIWA (Paesi Bassi): i raccordi di scarico in PVC Nicoll beneficiano del benestare tecnico n° K4154/96 rilasciato dal ente certificatore KIWA.

Identificazione dei raccordi Esempio: curva MF a 87° 30' Ø 200 codice CB8

Identificazione dei raccordi

Esempio: curva MF a 45° Ø 100 codice CT4

Le norme

NF EN 1329.1 Sistema di canalizzazione in Polivinilcloruro non plastificato (PVC-U) nel campo degli scarichi (a bassa ed alta temperatura) sia all'interno della struttura degli edifici (marcati "B") sia nel sottosuolo entro un metro la struttura dell'edificio (marcati "BD").

NFT54.030 Raccordistampatiin PVC perimpianto discarico senza pressione delle acque domestiche, e specifiche.

NF EN 1053 Elementi di canalizzazione termoplastici per applicazioni senza pressione. Metodo di prova alla tenuta stagna dell'acqua.

NF EN 1054 Elementi di canalizzazione termoplastici per l'evacuazione delle acque reflue. Metodo di prova alla tenuta stagna dell'aria alle giunzioni.

NF EN 1055 Elementi di canalizzazione termoplastici per l'evacuazione delle acque reflue all'interno dell'edificio. Metodo di prova di resistenza a cicli di temperatura elevata.

NOTA TECNICA: marchio NF Me / NF E

Nel caso particolare di raccordi con Ø inferiore o uguale ai 50 mm la marcatura è presente nell'imballaggio.

Tutte queste norme sono in accordo con le specificazioni ed il lavoro dell'ISO (International Standard Organisation).

Le norme francesi (NF) relative ai raccordi in PVC per scarico sono esattamente corrispondenti alle norme italiane (UNI), ed entrambe fanno riferimento alle normative europee (EN).

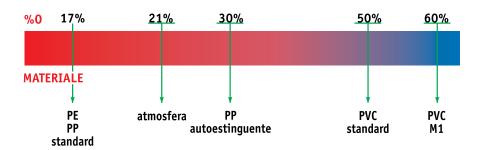
Caratteristiche tecniche

Certificazione Me

I raccordi PVC Nicoll, grazie alla loro particolare composizione hanno ottenuto la classificazione di reazione al fuoco Me da parte del C.S.T.B. (Centro Scientifico e

Tecnico dell'Edilizia) francese; di conseguenza i raccordi Nicoll sono ininfiammabili.

Resistenza chimica


Il PVC Nicoll offre un'ottima resistenza all'attacco chimico delle acque di scarico così come a quello dei liquidi industriali.

Nella pagine successiva è riportata una tabella riassuntiva sulla resistenza chimica del PVC rigido (non plastificato) a fluidi diversi, in condizione di assenza di sollecitazioni meccaniche.

Resistenza al fuoco

Sono riportate di seguito le percentuali di ossigeno presenti nei diversi materiali impiegati nella realizzazione dei più comuni sistemi di scarico idrosanitario.

Più elevata è tale percentuale di ossigeno, più il materiale resiste al fuoco. È evidente che il PVC in classe Me è il materiale per lo scarico idrosanitario con la maggior resistenza al fuoco.

Resistenza fisica e meccanica

Caratteristiche	Specifiche
Massa volumetrica a 23°C	da 1.370 a 1.460 Kg/m³
Assorbimento acqua	Inferiore o uguale a 0,04 Kg/m²
Temperatura di rammollimento VICAT	tda 78 a 81°C
Classificazione alla reazione al fuoco	Me (ex M1)
Caratteristiche in trazione a 23°C	Media dei carichi di rottura R ≥ 45 MPa
Media degli allungamenti a rottura A	≥ 80%
Modulo di elasticità	compresa tra 2.500 e 3.000 MPa

Messa in opera

Dilatazione dei tubi

La temperatura dei fluidi trasportati è elemento alquanto importante; infatti, come tutte le materie plastiche, il PVC subisce delle variazioni di lunghezza al variare della temperatura ambiente e di quella dei fluidi trasportati:

- nel caso degli SCARICHI CONTINUI, la temperatura dei fluidi non dovrà superare 70° C.
- nel caso degli SCARICHI DISCONTINUI, la temperatura dei fluidi può raggiungere 95° C (vedi lavatrici domestiche, lavastoviglie e lavelli cucina) per periodi che non dovranno eccedere i due minuti. Si aumenterà il diametro se necessario.

Il coefficiente di dilatazione lineare del PVC è di 7 mm x 10 metri x 10° C di escursione termica. La dilatazione può causare la rottura dei raccordi se non si installano i "Giunti di dilatazione".

Assemblaggio

L'assemblaggio dei tubi e raccordi viene fatto mediante la colla NICOLL a solvente forte che ha la particolarità di sciogliere le due parti di PVC in contatto (esterno del tubo, interno del bicchiere del raccordo) per fonderli in un unico pezzo. Questo tipo di assemblaggio generalmente chiamato "incollaggio" è in realtà un'autentica "saldatura a freddo". Questa offre una resistenza identica a quella del tubo e del raccordo che unisce e ha le stesse proprietà del PVC. Oltre alla durata illimitata nel tempo, la saldatura a freddo dà una tenuta ermetica sia agli odori che ai fluidi trasportati.

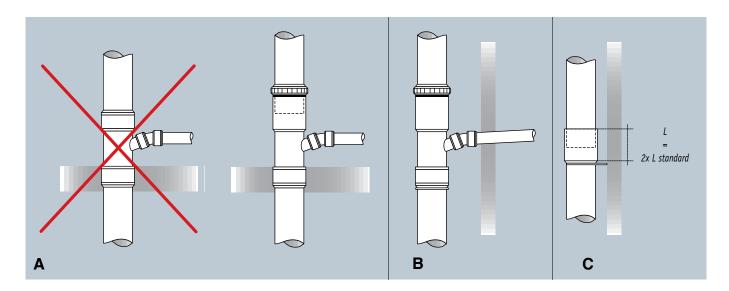
Bicchieratura del tubo

Quest'operazione deve essere fatta solo se assolutamente indispensabile (impossibilità di usare un manicotto FF, per esempio). Con molta cautela, portare l'estremità del tubo a 130/140°C, con aria calda o con fiamma dolce, muovendo continuamente e rapidamente per evitare la bruciatura del tubo. Dopo l'operazione di riscaldamento, il tubo non deve presentare segni di bruciatura. Quando la formazione del bicchiere sarà ultimata, attendere il completo raffreddamento, prima di procedere alla saldatura.

Piegatura ad ampio raggio

Quest'operazione serve ad ottenere una curvatura ad ampio raggio che non potrà superare i 15 °C. Riscaldare il tubo come già spiegato sopra, avendo cura di portare la parte esterna della futura curva ad una temperatura leggermente più alta della parte interna. Quando il tubo sarà malleabile, riempirlo con sabbia o con una quaina di gomma, in modo tale da mantenere la forma tonda durante l'operazione di piegatura. Non è consigliabile piegare tubi di diametro superiore a 50 mm.

IMPORTANTE:


L'impianto dovrà essere installato in modo da non sopportare nessuna sollecitazione meccanica di alcun genere (flessioni, torsioni, tensioni) sia durante le operazioni di montaggio che in quelle di muratura.

Nicoll garantisce il perfetto funzionamento del sistema di scarico idrosanitario solamente quando tutti i suoi componenti (tubi e raccordi), sono di propria produzione.

La dilatazione dei tubi in PVC

In caso di calate verticali:

l'interposizione di manicotti di dilatazione indipendenti o incorporati alla braga (vedi pagg. 170-171) è obbligatoria ad ogni livello per le calate e per le discese i cui elementi sono bloccati al pavimento o fissati ad un'entrata laterale (fig. A e B).

Le discese di acque pluviali installate sulla facciata non necessitano di un manicotto se il bicchiere realizzato sul tubo è più lungo (due volte la lunghezza normale) e se la parte maschio, non incollata, si ferma a 2 cm dal fondo del bicchiere (fig. C). Le calate che attraversano una guaina tecnica senza punto fisso, possono avere un giunto di dilatazione sostenuto da un collare posto ogni tre piani (il seminterrato va considerato come un piano).

In caso di tubazioni orizzontali:


i giunti di dilatazione sono utilizzati principalmente per scarichi di lavatrici, lavastoviglie e lavelli cucina, dato che questi subiscono dei considerevoli sbalzi di temperatura che creano una forte dilatazione del tubo, quando questo è di lunghezza superiore ad un metro. Il tubo è generalmente bloccato alle sue estremità da curve, braghe, ecc., che costituiscono dei punti fissi sottoposti alla forza causata dalla dilatazione del tubo. Per assorbire la variazione di lunghezza del tubo, è necessario installare un giunto di dilatazione vicino ad uno dei due punti fissi.

Importanza della temperatura dei fluidi trasportati

Come tutte le materie plastiche, il PVC subisce delle variazioni di lunghezza secondo la temperatura ambiente e quella dei fluidi trasportati:

- In caso di SCARICHI CONTINUI, la temperatura dei fluidi non dovrà superare 65/70°C.
- In caso di SCARICHI DISCONTINUI, la temperatura dei fluidi può raggiungere 95°C (vedi lavatrici domestiche e lavastoviglie) per periodi che non dovranno eccedere i due minuti. Il coefficiente di dilatazione lineare del PVC è di 0,7 mm x 1 m x 10°C di escursione termica.

Esempio: un tubo di esattamente 1 m, a temperatura ambiente di 20° C, si allunga di 4,9 mm quando una lavatrice scarica l'acqua a 90° C (0,7 mm x 1 m x 7 = 4,9 mm). Una volta finito lo scarico, il tubo ritornerà subito alla sua lunghezza originale. La dilatazione potrebbe causare la rottura di raccordi qualora non fossero utilizzati gli appositi giunti di dilatazione o l'impianto non sia realizzato con raccordi e tubi con guarnizione. Si deve tassativamente applicare un giunto di dilatazione ad ogni punto fisso per ovviare ai problemi di assestamento di fabbricati, e in prossimità di scarichi di acqua particolarmente calda con temperature superiori a 40° C (lavelli cucina, scarichi di lavatrici e lavastoviglie), per evitare problemi causati dalle dilatazioni.

354

Resistenza chimica del PVC a fluidi e composti diversi a 20°C e 60°C

Reagente o	Conc. %	Temp. 20	C°
prodotto ACETICA, ALDEIDE	100	NS	00
ACETICA, ALDEIDE	100	NS	NS
ACETICO ACIDO	60	S	L
ACETICO ACIDO MONOCL.	SOL.	S	L
ACETO		S	S
ACETONE	100	NS	NS
ACQUA DI MARE		S	L
ACQUA OSSIGENATA ADIPICO, ACIDO	SOL SAT.	S	S
ALLILICO, ALCOLE	90	s L	NS
ALLUMINIO CLORURO	SOL. SAT.	S	S
ALLUMINIO SOLFATO	SOL. SAT.	S	S
AMILE ACETATO	100	NS	NS
AMILICO, ALCOLE	100	S	L
AMMONIACA (GAS)	100	S	S
AMMONIACA (LIQ)	100	L	NS
AMMONIACA (SOLUZ.)	SOL. DIL.	S	_ <u>L</u>
AMMONIO, CLORURO	SOL. SAT.	S	S
AMMONIO, FLUORURO AMMONIO NITRATO	SOL. SAT.	S	
AMMONIO SOLFATO	SOL. SAT.	S	
ANILINA	100	NS	NS
ANILINA	SOL. SAT.	NS	NS
ANILINA CLORIDRATO	SOL. SAT.	NS	NS
ANTIMONIO CLORURO	90	S	S
ARGENTO NITRATO	SOL. SAT.	S	L
ARSENICO, ACIDO	SOL. DIL.	S	
BENZALDEIDE	0,1	NS	NS
BENZENE	100	NS	NS
BENZINA (IDROC. ALIFATICI)	00/00	S	S
BENZINA (BENZENE) BENZOICO, ACIDO	80/20 SOL. SAT.	NS L	NS NS
BIRRA	SUL. SAI.	S	S
BORACE	SOL. SAT.	s	
BORICO, ACIDO	SOL. DIL.	S	L
BROMICO, ACIDO	10	S	-
BROMIDRICO, ACIDO	50	S	L
BROMO (LIQUIDO)	100	NS	NS
BUTADIENE	100	S	S
BUTANO	100	S	
BUTILE ACETATO	100	NS	NS
BUTILFENOLO	100	NS	NS
BUTILICO BUTIRRICO, ACIDO	100 20	S S	
BUTIRRICO, ACIDO	98	NS	NS
CALCIO, CLORURO	SOL. SAT.	S	S
CALCIO, NITRATO	50	S	S
CARBONICA ANIDRIDE	100	S	S
CARBONIO SOLFURO	100	NS	NS
CARBONIO TETRACLORURO	100	NS	NS
CICLOESANOLO	100	NS	NS
CICLOESANONE	100	NS	NS
CITRICO, ACIDO	SOL. SAT.	S	S
CLORIDRICO, ACIDO	>30	S	S
CLORO (ACQUA DI)	SOL. SAT.	L L	NS NS
CLORO (GAS) SECCO CLOROSOLFONICO, ACIDP	100	L L	NS NS
CRESILICI, ACIDI	SOL. SAT.	NS	NS
CRESOLO	SOL. SAT.	-	NS
CROMICO, ACIDO	1÷50	S	L
CROTONICA, ALDEIDE	100	NS	NS
DESTRINA	SOL. SAT.	S	L
DICLOROETANO	100	NS	NS
DIGLICOLICO ACIDO	18	S	L

Reagente o prodotto	Conc.	Temp.	C°
DIMETILAMMINA	30	S	-
ESADECANOLO	100	S	S
ETILE ACETATO	100	NS	NS
ETILE ACRILATO	100	NS	NS
ETILE ALCOLE	95	S	L
ETILE, ETERE	100	NS	L
FENILIDRAZINA	100	NS	NS
FINILIDRAZINA CLORIDRIC.	97	NS	NS
FENOLO	90	NS	NS
FERRO (III) CLORURO	SOL. SAT.	S	S
FLUORIDRICO, ACIDO	60	L	NS
FLUOSILICICO, ACIDO	32	S	S
FORMALDEIDE FORMALDEIDE	SOL. DIL.	S	S
FORMICO, ACIDO	1÷50	S	L
FOSFINA	100	s	L
FOSFORICO ORTO ACIDO	30	s	L
FOSFORO TRICLORURO	100	NS	
FURFURILICO ALCOLE	100	NS	NS
GLICERINA	100	S	S
GLICOLE ETILENICO	CONC. LAV.	S	S
GLICOLICO, ACIDO	30	S	S
GLUCOSIO	SOL. SAT.	S	L
IDROGENO	100	S	S
IDROGENO SOLFORATO	100	S	S
LATTE		S	S
LATTICO, ACIDO	10	S	L
LATTICO, ACIDO	10÷90	L	NS
LIEVITO	SOL.	S	L
MAGNESIO CLORURO	SOL. SAT.	S	S
MAGNESIO SOLFATO	SOL. SAT.	S	S
MALEICO ACIDO	SOL. SAT.	S	L
MELASSA	SOL. LAV.	S	L
METILE METACRILATO	100	NS	NS
METILENE CLORURO	100	NS	NS
METILICO, ALCOLE	100	S	L
NICHEL SOLFATO	SOL. SAT.	S	S
NICOTINICO, ACIDO	CONC. LAV.	S	S
NITRICO, ACIDO NITRICO, ACIDO	<46	S NS	L
OLEICO, ACIDO	46÷98 100	S	NS S
OLEUM	10% DI SO ₃	NS	NS
OLI E GRASSI	1070 21 003	S	S
OSSALICO, ACIDO	SOL. DIL.	S	L
OSSALICO, ACIDO	SOL. SAT.	S	S
OSSIGENO	100	S	S
OZONO	100	NS	NS
PERCLORICO, ACIDO	10	S	L
PERCLORICO, ACIDO	70	L	NS
PICRICO, ACIDO	SOL. SAT.	S	S
PIOMBO ACETATO	SOL. SAT.	S	S
PIOMBO TETRAETILE	100	S	-
PIRIDINA	100	NS	-
POTASSIO BICROMATO	40	S	S
POTASSIO BROMURO	SOL. SAT.	S	S
POTASSIO CIANURO	SOL.	S	S
POTASSIO CLORURO	SOL. SAT.	S	S
POTASSIO CROMATO	40	S	S
POTASSIO FERRICIANURO	SOL. SAT.	S	S
POTASSIO FERROCIANURO	SOL. SAT.	S	S
POTASSIO IDROSSIDO	SOL.	S	S
POTASSIO NITRATO	SOL. SAT.	S	S
POTASSIO PERSOLEATO	20	S	S
POTASSIO PERSOLFATO	SOL. SAT.	S	L

Reagente o prodotto	Conc.	Temp. 20	C°
PROPANO (GAS) LIQ.	100	s	-
RAME CLORURO	SOL. SAT.	S	S
RAME FLORURO	2	S	S
SAPONE	SOL.	S	L
SODIO BENZOATO	35	S	L
SODIO BISOLFITO	SOL. SAT.	S	S
SODIO CLORATO	SOL. SAT.	S	S
SODIO CLORURO	SOL. SAT.	S	S
SODIO FERRICIANURO	SOL. SAT.	S	S
SODIO IDROSSIDO	SOL.	S	S
SODIO IPOCLORITO	100 (13% CL)	S	L
SODIO SOLFITO	SOL. SAT.	S	L
SOLFORICO, ACIDO	40÷90	S	L
SOLFORICO, ACIDO	96	L	NS
SOLFOROSA ANIDRIDE	100 LIQUIDA	L	NS
SOLFOROSA ANIDRIDE	100 SECCA	S	S
SOLFOROSO, ACIDO	SOL.	S	S
STAGNO CLORURO	SOL. SAT.	S	S
SVILUPP. FOTOGRAFICO	CONC. LAV.	S	S
TANNICO, ACIDO	SOL.	S	S
TARTARICO, ACIDO	SOL.	S	S
TOLUENE	100	NS	NS
TRICLOROETILENE	100	NS	NS
TRIMETILOLPROPANO	<10	S	L
UREA	10	S	L
URINA		S	L
VINILE ACETATO	100	NS	NS
VINO		S	S
XILENE	100	NS	NS
ZINCO CLORURO	SOL. SAT.	S	S
ZUCCHERO	SOL. SAT.	S	S

Legenda:

- **S** = nessuna corrosione, proprietà inalterate
- L = limitata corrosione, proprietà leggermente alterate
- **NS** = corrosione, proprietà alterate

Per ulteriori informazioni contattateci.

